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Abstract  —  The mathematical model of uncertainty estimation 

in the calibration of optical tachometers is presented. Emphasis is 
placed on the analysis of the dominant uncertainty component, for 
which two mathematical models are used and compared to each 
other. The first model uses a mathematical expression that 
constitutes a discriminant and the second model is based on Monte 
Carlo methods. Results are displayed and analyzed for five 
calibration points. 
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I. INTRODUCTION 

Dominance analysis is an important criteria in the calibration 

of optical tachometers in a lot of cases, because of the 

instrument´s metrological features, dominance happens by the 

resolution component. For this analysis, two mathematical 

models (described in [1] and [2]) are considered and compared 

with each other. 

This article is complementary to an article generated in 2016 

[3]. New observations are made and the use of Monte Carlo 

methods are included among other metrological analyzes in the 

magnitude of frequency. 

Note: This is the extended paper of the lecture presented at 

CPEM 2020 (see [5]) 

II. DATA ACQUISITION AND RESULTS 

Data were acquired by experimental set-up of optical 

tachometers calibration reported in [3]. Results were obtained 

for five calibration points as shown in table 1. 

Note 1: A square type frequency signal is used. 

III. MATHEMATICAL MODEL 

Three components of uncertainty are considered, namely: 

repeatability, resolution and standard. The second component 

is rectangular type while the other two are normal type. 

Uncertainty is estimated using the GUM method [4]; the 

structure of the model is the same presented in [3], however, on 

this article the objective equation is given by the error instead 

of fractional frequency deviation. This is due to a few (around 

10) data are taken in the tachometers calibration. The data 

processing is not related to a series of time. 

The general mathematical model is 

 

𝐸 = 𝑓𝐼𝐵𝐶 − 𝑓𝑃. 
 

(1) 

Where, 𝑓𝐼𝐵𝐶  is the frequency measured by the instrument 

under calibration and 𝑓𝑃 is the frequency generated by the 

standard instrument. 

A. Discriminant model 

With the uncertainty components identified by mathematical 

model (1), it is important to point out that an option to assign 

the freedom degrees to the components with a type B evaluation 

is through equation G.3 of [4]. It has 
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(2) 

Note 2: From the perspective of this article it is preferred to 

work with (2) instead of taking infinite freedom degrees for a 

rectangular type B distribution. 

Having the freedom degrees associated with each uncertainty 

component, the Welch-Satterthwaite equation is used to obtain 

the effective freedom degrees. So it can get the coverage factor 

k and finally the expanded uncertainty [3]. 

Once the combined uncertainty is obtained, the dominance 

analysis must be done, for which, this first model poses a 

criteria given by 
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(3) 

Where the subindex 𝑖 is the i-th sensitivity coefficient and 

"maxi" refers to the uncertainty component with the greatest 

contribution. If (3) is fulfilled, that component is dominant. 

This criteria is taken from [1] (see section S9.14 of supplement 

2). Note: It is good to clarify that (3) is rewritten with respect 

to its version in [1] and that the background of the expression 

is a Taylor series expansion. 

Note that ultimately (3) is a discriminant. For this reason in 

this article, this model will be called “D model”. Applying these 

concepts to the case study in this article, when the value of the 

component by resolution is the greatest, it has 
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(4) 

Where, 𝑢𝑅𝐸𝑃𝐸 is the component by repeatability, 𝑢𝑃 is the 

component by the standard and 𝑢𝑅𝐸𝑆𝑂 is the component by 
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resolution. Note: The details of each of these three components 

can be consulted in [3]. For now, it is important to bear in mind 

that 𝑢𝑅𝐸𝑆𝑂 has a rectangular (homogeneous) probability 

distribution associated with it.  

Note: Annex 1 contains the data table used (real calibrations) 

in this model D. 

B. MC Model 

This model consists in obtaining the uncertainty through 

Monte Carlo methods. The NIST Uncertainty Machine 

application was used directly [2]. In this case, what is obtained 

is more detailed information on the probability distribution 

associated with the combined uncertainty. In this article, this 

mathematical model is called "MC Model". 

It´s necessary understanding better the behavior of the MC 

model. The following numerical trial was performed: Data from 

a real calibration were taken and gradually modified to obtain 

different results in their standard deviation S (where S is 

defined according to [4]). Although the data has been 

intentionally modificated, these values would perfectly be 

obtained in a real calibration (see section IV. Results). 

Note: In Annex 2, the table of data used in this numerical trial 

is placed; there is also a comment about it. 

C. Note on the Central Limit Theorem 

From the perspective of this work, the Central Limit Theorem 

plays a very important role. This theorem is referenced in 

Annex G of [4]. Certainly, it can often assume that the 

conditions of the Central Limit Theorem (CLT) are satisfied.  

In other words, it assumes that the coverage factor k is equal to 

2 or close (it is obtained from the approximation t-Student). 

However, it is rare to do a verification of this; It may happen 

that there is a dominant component of uncertainty with other 

distribution types than the normal one and it imposes its 

distribution on the output distribution (it means, on the 

combined uncertainty). Summarizing what was stated in [4], we 

have the following: 

Given: 
 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛). 
 

(5) 

Es decir, 𝑌 es una función que depende de variables de 

entrada 𝑋𝑖. The distribution of 𝑌 is approximately normal if the 

following conditions are met: 

- The input variables are independent of each other. 

- None of the input variables with a distribution other than 

Normal is dominant. 

The following images illustrate what happens. 

 
Image 1. Case in which the conditions of the CLT are satisfied. 

Note: uc refers to the combined uncertainty. 

 
Image 2. Case of dominance of a rectangular component. 

The case illustrated in image 2 is the one that interests to 

identify and study in this work. 

Note: Annex 3 schematically explains the steps that are 

followed (in model D) when each of the two scenarios 

presented in the two previous images are given. 

IV. RESULTS 

Table 1 shows the numerical results obtained through the D 

Model and the MC Model. In table, uc and U are the combined 

uncertainty and the expanded uncertainty respectively, as 

defined in (10) and (18) of [4]. The coverage probability is 

95.45%. Table 2 shows the shape of the probability distribution 

(and its respective coverage factor k) obtained with each model 

given by the numerical trial. 
Table 1. Results comparison (real calibrations). Units: RPM 

(Coverage probability = 95.45%) 

F 

(RPM) 

D Model MC Model 

uc k U uc k U 

20 0.0327 2.02 0.0660 0.0327 1.82 0.0596 

60 0.0289 1.65 0.0476 0.0289 1.65 0.0476 

300 0.0470 2.12 0.0997 0.0471 1.94 0.0913 

15000 0.493 2.13 1.05 0.494 1.94 0.960 

99000 5.354 2.32 12.4 5.360 1.96 10.5 

 
 

 

 

 



Table 2. Numerical trial. Probability distribution shape and coverage factor in terms of the standard deviation S.  

(Coverage probability = 95.45%) 

Model S1 = 0.95 S2 = 0.63 S3 = 0.32 S4 = 0.00 

MC 

    

D 

    

V. ANALYSIS OF RESULTS 

Both models clearly show that appear the dominance of 

resolution component (point of 60 RPM in Table 1), which is 

rectangular. 

In cases of non-dominance (situation in which the conditions 

of the central limit theorem holds) important differences are 

observed. It is clear that the D Model presents an over-

estimation of uncertainty. This is to be expected given the 

background about (2). 

The MC Model allows to observe a gradualness in the 

behavior of the probability distribution while the D Model 

establishes a specific limit on which it is not possible to 

differentiate, for example, cases of rectangular distribution 

strong or weakly dominant. 

It should be noted that the analysis presented is not restricted 

to the calibration of tachometers. It has a very general 

applicability and can be presented in another types of 

calibrations. 

VI. CONCLUSION  

In the calibration of optical tachometers the mathematical 

concept of dominance should be considered for the estimation 

of uncertainty instead of applying a generic method of 

statistical analysis. 

REFERENCES 

[1] EA-4/02 M:2013 Expression of the Uncertainty of Measurements 
in Calibration (including supplements 1 and 2 to EA-4/02) 

[2] T. Lafarge and A. Possolo (2015) "The NIST Uncertainty 
Machine", NCSLI Measure Journal of Measurement Science, 
volume 10, number 3 (September), pages 20-27. 

[3] L. C. Hernández and N. Bahamón, “Uncertainty Estimation in 
Optical Tachometers Calibration” Momento. n. 52, pp 68-82. 
January 2016. 

[4] JCGM 100:2008 Evaluation of measurement data – Guide to the 
expression of uncertainty in measurement, BIPM, IEC, IFCC, 
ISO, IUPAC, OIML, (GUM 1995 with minor corrections). 

[5] Conference on Precision Electromagnetic Measurements CPEM 
2020. Analisys of dominant uncertainty in the calibration of 
optical tachometers. Nelson Bahamón, Liz Catherine Hernández 
Forero, Claudia Fernanda Rodríguez, Alexander Gutierrez 
Guevara. Instituto Nacional de Metrología de Colombia.  

ANNEX 1. Real calibrations data. 

The following table shows the uncertainty budget for the 

calculations obtained with real calibrations in model D. No 

explanations are included because these can be consulted in [3] 

 

Table 3. Real calibrations data (Model D). 

Data 
19 

RPM 

60 

RPM 

300 

RPM 

15000 

RPM 

99000 

RPM 

1 19.9 60.0 300.1 15001 99011 

2 19.9 60.0 300.2 15001 99020 

3 20.0 60.0 299.9 14998 99001 

4 19.9 60.0 299.9 15001 98962 

5 19.9 60.0 300.0 15001 99011 

6 19.9 60.0 299.9 15001 98991 

7 20.0 60.0 300.0 15001 98991 

8 19.9 60.0 300.1 14998 99011 

9 20.0 60.0 300.2 15001 99011 

10 19.9 60.0 300.1 15001 99011 

Ave 19.9 60.0 300.0 15000 99002 

Error -0.1 0.0 0.0 0 2 

S 0.0483 0.00 0.12 1.26 16.90 

uREPE 0.0153 0.00 0.04 0.4 5.3 

uRESO 0.0289 0.03 0.03 0.3 0.3 

uP 4.60E-07 1.38E-06 7E-06 3E-04 2E-03 

uc 0.0327 0.0289 0.05 0.5 5.4 

Discri 0.529 0.00005 0.78 0.72 0.05 

v urepe 9 9 9 9 9 

v ureso 200 200 200 200 200 

v up 200 200 200 200 200 

v uc 119 200 23 21 9 

k 2.02 1.65 2.12 2.13 2.32 

U 0.07 0.05 0.1 2 13 

k=1.65 k=2.01 k=2.04 k=2.08 

k=1.64 k=1.75 k=1.87 k=1.92 



 

ANNEX 2. Numerical trial data. 

The following is the data table used in the numerical trial 

mentioned in section III.B and whose graphic results are 

illustrated in table 2. 

Table 4. Numerical trial data (units: RPM). 

Data Trial 1 Trial 2 Trial 3 Trial 4 

1 99002 99002 99002 99002 

2 99002 99002 99002 99002 

3 99002 99002 99002 99002 

4 99002 99002 99002 99002 

5 99002 99002 99002 99002 

6 99002 99002 99002 99002 

7 99002 99002 99002 99002 

8 99002 99002 99002 99002 

9 99002 99002 99002 99002 

10 99005 99004 99003 99002 

Average 99002.30 99002.20 99002.10 99002.00 

S 0.95 0.63 0.32 0.00 

It can be noted that actually, the transition from normal to 

rectangular output distribution is subtle. In order to visualize 

the gradualness shown in table 2, what was done was to slightly 

vary only one of the data (record 10). 

ANNEX 3. Detail on model D. 

Due to (4) there are two scenarios. When inequality is 

satisfied and when not. The following image illustrates this: 

 
Image 3. Scheme of steps to follow according to the output 

distribution. 

If (4) is not satisfied, it means that the conditions of the 

Central Limit Theorem are satisfied. In other words the output 

distribution is approximately normal. In this case, the 

calculation of the effective degrees of freedom is made using 

the Welch Satterthwaite equation. With this result and taking 

into account the chosen coverage probability, the inverse t 

distribution is calculated to obtain the coverage factor k and 

finally the expanded uncertainty. This path is the best known 

and most common as the dominance analysis is not generally 

done. 

If (4) is satisfied, it means that the conditions of the Central 

Limit Theorem are not satisfied. We have that the component 

of uncertainty by resolution is dominant and therefore the 

output distribution is rectangular (homogeneous). This case is 

much less known or taken into account. Here the coverage 

factor k is immediate because it is associated with a rectangular 

distribution (see Annex G of [4].) and its value is 1.65. 
 


